Education

ETH Zurich

M.S. IN ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY

Southeast University

B.E. IN ELECTRONIC SCIENCE AND ENGINEERING

• GPA: 3.95/4.0, Ranking: 1/126

Technical University of Munich

Exchange student in Electrical and Computer Engineering

Publication

[1] Zhu, Yu, et al. "Distributed Recommendation Inference on FPGA Clusters." International Conference on Field-Programmable Logic and Applications (FPL 2021). 2021.

Projects

Graph based Approximate-Nearest-Neighbor-Search on FPGA

MASTER THESIS, SUPERVISED BY PROF. GUSTAVO ALONSO

- Implemented Hierarchical-Navigable-Small-World (HNSW) accelerator for Approximate-Nearest-Neighbor-Search (ANNS) on FPGA.
- · Optimized the dataflow by prefetching to hide memory latency and batching computation to fully utilize memory bandwidth.
- Built an efficient priority queue for parallel comparison between input and elements to reduce the initiation interval of continuous insertion.
- Evaluated the throughput on 1M 128-dim SIFT dataset. When utilizing 8 HBM ports to access data in parallel, the performance of FPGA was comparable to CPU running with 4 threads.

Aggregation Group-by on FPGAs

Semester Project, supervised by Prof. Gustavo Alonso

- Designed and implemented hash-based group-by aggregation for high cardinality (4 HBMs were used, each HBM supported 4M cardinality).
- Took advantage of Content-Addressable-Memory (CAM) as cache to do preaggregation and avoid read-after-write hazard for off-chip memory.
- Avoided concatenating local hash tables in the final stage for scalability by partitioning input key-value tuples into different aggregation engines according to LSB of corresponding hash values.
- Evaluated the throughput on three datasets (uniform, hot-key, zipf) and generated software baseline in Spark SQL with 4 CPU cores. The number of input tuples was 64M and each key-value pair was 16B. When the cardinality was high, like 1M, hot-key distribution in my design performed the best, the throughput is about **6**× when compared with CPU; for uniform/zipf distribution, the acceleration of throughput was about **3**×.

Distributed Recommendation Inference on FPGA Clusters [1]

SEMESTER PROJECT, SUPERVISED BY PROF. GUSTAVO ALONSO

- · Applied deep neural networks in personalized recommendation systems on FPGA by optimizing the memory-bound embedding layer and computation-bound fully-connected layers.
- Reduced the bottleneck of memory access by utilizing HBM and fully explored the potential of computation in FPGA cluster which is connected via 100Gbps hardware network stack.
- Four-node cluster reached 7.68 × speedup in throughput compared with single FPGA and although the network transmission introduced extra latency, the overall latency was even smaller.

High-Performance Signal Generator

BACHELOR THESIS

- · Adopted an optimization method for high speed 48-bit DDS(Direct Digital Synthesizer) phase accumulator in FPGA to design a highperformance signal generator module based on the deep analysis of DDS.
- Combined hign-speed SRAM with ROM to improve the waveform storage depth of the generator module and utilized ultra low distortion and high speed 16-bit **D/A** convertor to design low-pass filter with elliptic function.

Precision Time Base Module

EXTRACURRICULAR RESEARCH

- Adopted equal precision frequency measurement algorithm to complete the frequency measurement of external trigger signal, and completed the conversion calculation of delaying time and phasing shift offset word parameters.
- Employed DDS chip AD9914 to achieve high-precision step-shift clock generation to generate an accurate clock signal with adjustable frequency and phase, and applied SPI communication protocol to configure register and achieve 40KHz step delay pulse signal output.

Others

Programming C/C++, Python, Matlab, Verilog, HLS Languages English(Fluent), Chinese(Native)

FEBRUARY 24, 2022

Yu Zhu · Resume

Nanjing, China

Oct. 2018 - Jun. 2019

Nanjing, China

Mar. 2018 - Sep. 2018

Zurich, Switzerland Nov. 2021 - Present

Zurich, Switzerland

Sep. 2019 - Present

Nanjing, China

Sep. 2015 - Jun. 2019

Munich, Germany

Oct. 2018 - Mar. 2019

Zurich, Switzerland

May. 2021 - Sep. 2021

Zurich, Switzerland

Oct. 2020 - Apr. 2021